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Abstract
Playing a symmetric bi-matrix game is usually physical implemented by sharing
pairs of ‘objects’ between two players. A new setting is proposed that explicitly
shows effects of quantum correlations between the pairs on the structure
of payoff relations and the ‘solutions’ of the game. The setting allows a
re-expression of the game such that the players play the classical game when
their moves are performed on pairs of objects having correlations that satisfy
Bell’s inequalities. If players receive pairs having quantum correlations the
resulting game cannot be considered another classical symmetric bi-matrix
game. Also the Nash equilibria of the game are found to be decided by the
nature of the correlations.

PACS numbers: 03.67.−a, 02.50.Le

1. Introduction

Playing a game requires resources for its physical implementation. For example, to play a
bi-matrix game the resources may consist of pairs of two-valued ‘objects’, like coins,
distributed between the players. The players perform their moves on the objects and later
a referee decides payoffs after observing them. Game theory usually links players’ actions
directly to their payoffs, without a reference to the nature of the objects on which the players
have made their moves. Analysis of quantum games [1] suggests that radically different
‘solutions’ can emerge when the same game is physically implemented on distributed objects
which are quantum mechanically correlated.

Much of recent work on quantum games [1–4] uses a particular quantization scheme
[1] developed for a bi-matrix game where two players, on receiving an entangled two-qubit
state, play their moves by local and unitary actions on the state. After disentanglement, a
measurement of the state rewards the players their payoffs. The payoffs become classical
when the moves are performed on a product state. For example, in Prisoners’ Dilemma a new
and more beneficial equilibrium emerges in its quantum form [1] when the allowed moves are
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a chosen subset of all possible unitary actions [5]. Extending the set of moves to all possible
unitary actions results in no equilibrium at all.

Recently Enk and Pike [6] have argued that the emergence of a new equilibrium in
quantum Prisoners’ Dilemma can also be understood as an equilibrium in a modified form of
the game. They constructed another matrix game, in which players have access to three pure
classical strategies instead of two, claiming that it ‘captures’ everything quantum Prisoners’
Dilemma has to offer. Constructing an extended matrix with an extra pure move, in their
view, is justified because also in quantum Prisoners’ Dilemma players can play moves which
are superpositions of the two classical moves. Quantum Prisoners’ Dilemma can therefore be
thought of as being equivalent to playing a modified classical game with an extended matrix.

Truly quantum pairs of objects possess non-local correlations. Though it is impossible
to have a local model, producing exactly the same data, of a quantum game set-up, how
such unusual correlations may explicitly affect solutions of a game when implemented with
quantum objects? To how far extent solutions of a quantum game themselves can be called
‘truly quantum’ in nature. To address these questions and to find a quantum game for which
it becomes difficult, if not impossible, to construct another classical game the following two
constraints are suggested [7] that a quantization scheme should follow:

(C1) In both classical and quantum version of the game the same set of moves should be made
available to the players.

(C2) The players agree, once and for all, on explicit expressions for their payoffs which must
not be modified when introducing the quantized version of the game.

Only the nature of correlations existing between the objects the players receive will now
decide whether the resulting game is classical or quantum. The idea of a ‘correlation game’ [7],
created to satisfy the constraints C1 and C2, introduces a new set-up to play bi-matrix games.
Its motivation comes from EPR-type experiments on singlet states involving correlations of
the measurement outcomes. In such experiments Bell’s inequalities [9] are known to be
the constraints, derived under the principle of local causes, on correlations of measurement
outcomes of two-valued (dichotomic) variables. Truly quantum correlations are non-local in
character and violate the inequalities.

In a quantization scheme, that exploits correlations, players receiving pairs having
local correlations, that do not violate the Bell’s inequalties, must result in their payoffs
being classical. As pointed out in [7], despite explicit dependence of the players’ payoffs
on correlations, quantum payoffs can still be obtained in a correlation game even when the
correlations do not violate Bell’s inequalities. In a sense this aspect weakens the argument
for a correlation game. In the present paper we try to address this difficulty by following
a different approach in re-defining payoff relations in terms of the correlations. The new
approach is not faced with the indicated difficulty; i.e. local correlations, that do not violate
Bell’s inequalities, always result in the classical game. Also in the new approach non-local,
and truly quantum, correlations result in a game that cannot be considered as just another
classical symmetric bi-matrix game.

2. Classical symmetric bi-matrix games

A symmetric bi-matrix game between two players, Alice and Bob, has the following matrix
representation [8]:
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Alice

Bob

S1

S2

S1 S2

(r, r) (s, t)

(t, s) (u, u)
(1)

where, for example, Alice and Bob get payoffs s and t, respectively, when Alice plays S1 and
Bob plays S2. When Alice and Bob play a bi-matrix game their moves consist of deciding the
probabilities p and q, respectively, of playing the first strategy S1. The second strategy S2 is
then played with probabilities (1 − p) and (1 − q) respectively. The mixed strategy payoffs
for the players can be written as [7]

PA(p, q) = Kpq + Lp + Mq + N PB(p, q) = Kpq + Mp + Lq + N (2)

where the constants K,L,M and N can be found in terms of r, s, t and u, the coefficients of the
bi-matrix. A Nash equilibrium (NE) is a pair (p∗, q∗) defined by the following inequalities:

PA(p∗, q∗) − PA(p, q∗) � 0 PB(p∗, q∗) − PB(p∗, q) � 0. (3)

For example in the bi-matrix game of Prisoners’ Dilemma,

Alice

Bob

C

D

C D

(3, 3) (0, 5)

(5, 0) (1, 1)
(4)

where C and D represent the strategies of Cooperation and Defection, respectively, the
equilibrium-defining inequalities (3) for the matrix (4) are written as

(p∗ − p)(1 + q∗) � 0 (q∗ − q)(1 + p∗) � 0 (5)

giving p∗ = q∗ = 0 or (D,D) as the unique equilibrium.

3. Quantum correlation games (QCGs)

The correlation game [7] uses an EPR-type setting to play a bi-matrix game. Repeated
measurements are performed on correlated pairs of objects by two players, each receiving
one half. Players Alice and Bob share a Cartesian coordinate system between them and each
player’s move consists of deciding a direction in a given plane. For Alice and Bob these are the
x–z and y–z planes respectively. Call α and β the unit vectors representing the players’ moves.
Both players have a choice between two different orientations, i.e. α and z for Alice and β

and z for Bob. Each player measures the angular momentum or spin of his/her respective half
in one of the two directions. Let the vectors α and β make angles θA and θB , respectively,
with the z-axis. To link the players’ moves, represented now by angles θA and θB , to the usual
probabilities p and q appearing in a bi-matrix game, an invertible function g is made public at
the start of a game. The g-function maps [0, π ] to [0, 1] and allows us to translate the players’
moves to the probabilities p and q.

We assume the results of the measurements are dichotomic variables, i.e. they may take
only the values ±1, and are represented by a, b and c for the directions α, β and the z-axis,
respectively. Correlations 〈ac〉, 〈cb〉 and 〈ab〉 can be found from the measurement outcomes,
where the two entries in a bracket represent the players’ chosen directions. When the z-axis
is shared between the players as the common direction, the Bell’s inequality1 is written [9] as

|〈ab〉 − 〈ac〉| � 1 − 〈bc〉. (6)

1 For perfectly anticorrelated pairs the right hand side of the inequality is 1 + 〈bc〉.
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The classical correlations, written in terms of θA and θB , are known to be invertible. This
fact allows us to express θA and θB in terms of the correlations 〈ac〉 and 〈cb〉. The g-function
then makes possible the translation of θA and θB into p and q, respectively. In effect the
classical bi-matrix payoffs are re-expressed in terms of the classical correlations 〈ac〉 and
〈cb〉. We claim now that our classical game is given, by definition, in terms of the correlations.
Such re-expression opens the way to find ‘quantum’ payoffs when the correlations become
quantum mechanical.

In this setting the players’ payoffs involve only the correlations 〈ac〉 and 〈cb〉, instead
of the three correlations 〈ac〉, 〈cb〉 and 〈ab〉 present in the inequality (6), when the z-axis
is the common direction between the players. This aspect results in obtaining ‘quantum’
payoffs even when the correlations are local and satisfy the inequality (6). The motivation
for introducing EPR-type setting to bi-matrix games is to exploit quantum correlations to
generate quantum payoffs. So that, when the correlations are local, the classical game must be
produced. We show below the possibility of such a connection by some modifications in the
setting of a correlation game suggested previously. In the modified setting the classical payoffs
are always obtained whenever the correlations 〈ac〉, 〈cb〉 and 〈ab〉 satisfy Bell’s inequality (6).

4. A new approach towards defining a correlation game

The following modifications are suggested in the setting of a correlation game:

1. A player’s move consists of defining a direction in space by orientating a unit vector.
However, this direction is not confined to only the x–z or y–z planes. A player’s choice
of a direction can be anywhere in three-dimensional space. Therefore, Alice’s move is to
define a unit vector α and, similarly, Bob’s move is to define a unit vector β.

2. The z-axis is shared between the players as the common direction.
3. On receiving a half of a correlated pair, a player measures its spin in two directions. For

Alice these directions are α and z and for Bob these directions are β and z.
4. Each player measures spin with equal probability in his or her two directions.
5. Players agree together on explicit expressions giving their payoffs PA and PB in terms of

all three correlations, i.e.

PA = PA(〈ac〉, 〈cb〉, 〈ab〉) PA = PA(〈ac〉, 〈cb〉, 〈ab〉). (7)

These modifications eliminate the need for introducing the g-functions as done in [7]. The
modifications are also consistent with the constraints C1 and C2 and the idea of a correlation
game developed in [7] essentially retains its spirit. More importantly, a player’s move can be
in any direction in space.

4.1. Defining correlation payoffs in the new approach

A possible way is shown now to define the correlation payoffs (7) which reduce to the classical
payoffs (2) whenever the correlations 〈ab〉, 〈ac〉 and 〈bc〉 satisfy the inequality (6).

Consider two quantities ε and σ defined as follows:

ε =
√

3 + 〈bc〉2 + 2〈ab〉〈ac〉 σ =
√

2(1 + 〈bc〉) + 〈ab〉2 + 〈ac〉2. (8)

The quantities ε and σ can adapt only real values because the correlations 〈ac〉, 〈cb〉 and
〈ab〉 are always in the interval [−1, 1]. Consider now the quantities (ε − σ) and (ε + σ).
By definition ε and σ are non-negative, therefore, the quantity (ε + σ) always remains non-
negative. It is observed that if 0 � (ε − σ) then the correlations 〈ac〉, 〈cb〉 and 〈ab〉 satisfy
the inequality (6). That is because if 0 � (ε − σ) then 0 � (ε + σ)(ε − σ) = ε2 − σ 2. But
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ε2 − σ 2 = (1 − 〈bc〉)2 − |〈ab〉 − 〈ac〉|2 so that |〈ab〉 − 〈ac〉|2 � (1 − 〈bc〉)2 which results
in the inequality (6). All the steps in the proof can be reversed and it follows that when
the correlations 〈ac〉, 〈cb〉 and 〈ab〉 satisfy Bell’s inequality, the quantity (ε − σ) remains
non-negative.

For a singlet state satisfying the inequality (6) both the quantities (ε + σ) and (ε − σ)

are non-negative and must have maxima. Hence, it is possible to find two non-negative
numbers (ε−σ)

max(ε−σ)
and (ε+σ)

max(ε+σ)
in the range [0, 1], whenever the inequality (6) holds. Because

0 � ε, σ �
√

6 we have max(ε−σ) = √
6 and max(ε+σ) = 2

√
6. The numbers (ε−σ)/

√
6

and (ε + σ)/2
√

6 are in the range [0, 1] when the inequality holds. These numbers are also
independent of each other.

The above argument paves the way to associate a pair (p, q) of independent numbers with
the players’ moves (α, β), that is

p = p(α, β) q = q(α, β) (9)

where p, q are in the interval [0, 1] for all directions α, β, when the input states do not violate
the inequality (6). From the pair (p, q) a directional pair can also be found as

α = α(p, q) β = β(p, q) (10)

but more than one pair (α, β) of directions may correspond to a given pair of numbers. The
converse, however, is not true for known input states. That is, for known input states, only one
pair (p, q) can be obtained from a given pair (α, β) of directions.

Players’ payoffs can now be expressed in a correlation form by the following replacements,

p(α, β) ∼ (ε − σ)/
√

6 q(α, β) ∼ (ε + σ)/2
√

6 (11)

leading to a re-expression of the classical payoffs (2) as

PA(α, β) = Kp(α, β)q(α, β) + Lp(α, β) + Mq(α, β) + N

PB(α, β) = Kp(α, β)q(α, β) + Mp(α, β) + Lq(α, β) + N
(12)

or more explicitly as

PA(α, β) = K

12
(ε2 − σ 2) +

L√
6
(ε − σ) +

M

2
√

6
(ε + σ) + N

PB(α, β) = K

12
(ε2 − σ 2) +

M√
6
(ε − σ) +

L

2
√

6
(ε + σ) + N

(13)

where a player’s payoff now depends on the direction s/he has chosen. The payoffs (13) are
obtained under the constraints C1 and C2 and are now functions of all the three correlations.

Relations (9) can also be imagined as follows. When Alice decides a direction α in space,
it corresponds to a curve in the p–q plane. Similarly, Bob’s decision of the direction β defines
another curve in the p–q plane. Relations (11) assure that only one pair (p, q) can then be
obtained as the intersection between the two curves.

The set-up assures that for input states satisfying the inequality (6), all of the players’
moves (α, β) result in the correlation payoffs (13) generating identical to the classical payoffs
(2). For such input states relations (11) give the numbers p, q in the interval [0, 1], which can
then be interpreted as probabilities. However, for input states violating the inequality (6), a
pair (p, q) ∈ [0, 1] cannot be associated with players’ moves (α, β). It is because for such
states the quantity (ε − σ) becomes negative and the correlation payoffs (13) generate results
having a different form from the classical payoffs (2).
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5. Nash equilibria of QCGs

Because the players’ moves consist of defining directions in space, the Nash inequalities can
be written as

PA(α0, β0) − PA(α, β0) � 0 PB(α0, β0) − PA(α0, β) � 0 (14)

where the pair (α0, β0) corresponds to the pair (p∗, q∗), defined in equation (3), via relations
(11). The inequalities (14) are same as the inequalities (3), except their re-expression in terms
of the directions.

When the correlations in the input state violate the inequality (6), the payoff relations
(13) also lead to disappearance of the classical equilibria. It can be seen, for example, by
considering the Nash inequalities for the Prisoners’ Dilemma (5). Let the directional pair
(αD, βD) correspond to the equilibrium (D,D), that is, the inequalities (14) are written as

PA(αD, βD) − PA(α, βD) � 0 PB(αD, βD) − PA(αD, β) � 0. (15)

Assume the players receive input states that violate the inequality (6). It makes the quantity
(ε−σ) < 0, that is, the players’ moves α and β will not correspond to a point in the p–q plane
where p, q ∈ [0, 1]. Also the directional pair (αD, βD) does not remain a NE. It is because
the pair (αD, βD) is a NE only if players’ choices of any directional pair (α, β) correspond
to a point in the p–q plane where p, q ∈ [0, 1]. Because for input states that violate the
inequality (6) a pair of players’ moves (α, β) does not correspond to a point in the p–q plane
with p, q ∈ [0, 1], hence, the directional pair (αD, βD) does not remain a NE in the quantum
game. The disappearance of the classical equilibrium now becomes linked with the violation
of the inequality (6) by the correlations in the input states.

6. Quantum game as another classical game?

Coming back to the questions raised in the introduction, we now try to construct a classical
bi-matrix game, corresponding to a quantum game, resulting from the payoff relations (13).
The classical game is assumed to have the same general structure of players’ payoffs as given
in equations (2). This assumption derives from the hope that the quantum game, corresponding
to correlations in the input states that violate the inequality (6), is also equivalent to another
symmetric bi-matrix game. It is shown below that such a construction cannot be permitted.

Suppose the input states violate the inequality (6). For any direction Alice chooses to
play, her payoff given by equations (13) can also be written as

PA(α, β) = K ′pq + L′p + Mq + N (16)

where K ′ = −K and L′ = −L and p, q ∈ [0, 1]. Assuming that the constants K ′, L′,M and
N define a ‘new’ symmetric bi-matrix game, Bob’s payoff should then be written as

PB(p, q) = K ′pq + Mp + L′q + N. (17)

But in fact (17) is not obtained as Bob’s payoff in the quantum game with correlations violating
the inequality (6). Bob’s payoff in the quantum game is given as

PB(p, q) = K ′pq + M ′p + Lq + N (18)

where M ′ = −M . Hence the game resulting from the presence of quantum correlations in
the input states cannot simply be explained as another classical symmetric bi-matrix game:
a game obtained by defining new coefficients of the matrix involved. Players’ payoffs in the
quantum game reside outside the structure of payoffs of a classical symmetric bi-matrix game.
The payoffs can be explained within this structure only by invoking negative probabilities.
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An asymmetric bi-matrix game can, of course, be constructed having identical solutions to
the quantum game. In fact for any quantum game a classical model can always be constructed
that summarizes the complete situation and has solutions identical to the quantum solutions
as far as the players’ payoffs are concerned—a model that relates players’ moves directly
to their payoffs in accordance with the usual approach in game theory. But still it is not
an answer to our initial question: how solutions of a game are affected by the presence of
quantum correlations between the physical objects used to implement the game? It is because
the question can then simply be rephrased as: what if the modified classical game is played
with physical objects having quantum correlations?

7. Summary

The idea of a correlation game is about re-expression of payoffs of a classical bi-matrix
game in terms of correlations of measurement outcomes made on pairs of correlated particles.
The measurement outcomes are dichotomic variables and their correlations are obtained by
averaging over a large number of pairs. Bell’s inequalities represent constraints on these
correlations obtained under the principle of local causes. A re-expression of the classical
payoffs of a bi-matrix game in terms of correlations opens the way to explicitly see the effects
of quantum correlations on the solutions of the game.

In this paper a new setting is proposed where two players play a bi-matrix game by
repeatedly performing measurements on correlated pairs of objects. The setting is motivated
by EPR-type experiments performed on singlet states. On receiving a half of a pair, a player
makes a measurement of its spin in one of the two directions available to him/her. The
measurements are performed with equal probability in the two directions. Both players share
a common direction and defining the other direction is a player’s move.

We show how within this set-up a correlation version of a symmetric bi-matrix game can
be defined. The correlation game shows some interesting properties. For example, it reduces
to the corresponding classical game when the correlations in the input states are local and
do not violate Bell’s inequality (6). However, when the inequality is violated, the stronger
correlations generate results that can be understood, within the structure of classical payoffs
in a symmetric bi-matrix game, only by invoking negative probabilities. It is shown that
a classical Nash equilibrium is affected when the game is played with input states having
quantum correlations. The proposed set-up also provides a new perspective on the possibility
of reformulating Bell’s inequalities in terms of a bi-matrix game played between two spatially-
separated players.
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